Dioctyl phthalate increases the percentage of unsaturated fatty acids with a concomitant decrease in cellular heat shock sensitivity in the yeast Saccharomyces cerevisiae.

نویسندگان

  • B P Curran
  • S A Khalawan
  • M T Chatterjee
چکیده

In the past it has been reproducibly demonstrated that 37 degrees C-grown DBY747 yeast cells have 29% more unsaturated fatty acids and a 3 degrees C higher maximal heat shock response (HSR) than their 25 degrees C counterparts. Suddenly the HSR and lipid profiles of cells grown at 25 degrees C and 37 degrees C became indistinguishable from one another. This paper reports an aberrantly high level of unsaturated fatty acids and an abnormally insensitive HSR in cells grown at 25 degrees C in yeast nitrogen base (YNB) that has been reconstituted from dehydrated medium packaged in 'new' plastic containers. Effective even at a 1:600 dilution of reconstituted medium in laboratory-made YNB, the 'active ingredient' was identified using a combination of HPLC and mass spectroscopy as dioctyl phthalate (a plasticising agent). Furthermore, the same levels of increase in the percentage of unsaturated fatty acids and decrease in the sensitivity of HSR were found in cells grown in laboratory-made YNB that contained as little as 36 microM pure dioctyl phthalate. This compound nevertheless failed to elicit an observable effect on cellular growth rate at levels up to and including 144 microM. These results suggest that dioctyl phthalate causes yeast cells to accumulate high levels of unsaturated fatty acids with a concomitant decrease in the sensitivity of the HSR, without compromising overall cellular function. They also support earlier work that suggested that the HSR is exquisitely sensitive to the level of unsaturated fatty acids present in yeast cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feeding Artemia larvae with yeast heat shock proteins 82 (HSPs82) to enhance the resistance against abiotic stresses (hyperosmotic and high temperatures)

Feeding farmed Artemia with yeast heat shock proteins is a novel way to protect them from stress conditions during the culture.  In this study, the effect of feeding with stressed new identified Saccharomyces cerevisiae strain YG3-1 yeasts (containing induced heat shock proteins) on the survival of Artemia in stress conditions, was evaluated. For this purpose, heat shock proteins 82 (Hsps 82) o...

متن کامل

Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investig...

متن کامل

Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: involvement of a respiration-related process for maximal sensitivity and adaptive response.

Linoleic acid hydroperoxide (LoaOOH) formed during free radical attack on long-chain unsaturated fatty acids is an important source of biomembrane damage and is implicated in the onset of atherosclerosis, hepatic diseases, and food rancidity. LoaOOH is toxic to wild-type Saccharomyces cerevisiae at a very low concentration (0.2 mM) relative to other peroxides. By using isogenic mutant strains, ...

متن کامل

Unsaturated fatty acid mutants of Saccharomyces cerevisiae.

Resnick, Michael A. (University of California, Berkeley), and Robert K. Mortimer. Unsaturated fatty acid mutants of Saccharomyces cerevisiae. J. Bacteriol. 92:597-600. 1966.-The wild type of the yeast Saccharomyces cerevisiae does not require fatty acids or sterols for growth. Two types of lipid nutritional mutants have been induced in this organism. One of these classes of mutants requires an ...

متن کامل

Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 146 ( Pt 10)  شماره 

صفحات  -

تاریخ انتشار 2000